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Free Vibration of Thick Generally Laminated Quadrilateral
Plates Having Arbitrarily Located Point Supports

Rakesh K. Kapania* and Andrew E. Lovejoy†
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0203

Free vibration of generally laminated plates having arbitrarily located point supports is studied via
the Rayleigh– Ritz method. Chebychev polynomials are chosen as the trial functions and essential bound-
ary conditions along the edges are imposed by means of appropriate large arti� cial springs. This allows
for the edges of the plate to be free, simply supported, or clamped. An elastically restrained point is
represented by the appropriate spring constant value and by allowing this spring constant to become
large, a point support is represented. The � rst-order shear deformation theory is utilized in the devel-
opment of the equations of motion, along with the linear stress/strain relationship. Veri� cation of the
method is carried out through comparison with published results for point-supported plates. After the
method is veri� ed, a brief study of generally laminated plates having point supports is carried out. The
method developed is simple and ef� cient, making it perfectly suited to applications that require mul-
tiple calculations, such as optimization, and can be applied to analyze joined-wings and truss-braced
wings.

Introduction

P OINT-supported and elastically restrained plates � nd
many applications. For example, in civil engineering,

bridge and building spans can be considered as point-sup-
ported plates. Similarly, circuit boards used in electronics can
also be considered as point-supported plates. However, the au-
thors are motivated by the potential of the present method as
applied to aircraft structures, namely, joined-wing and trussed-
braced wing components. A great deal of focus has been di-
rected at the analysis of isotropic point-supported plates, but
point-supported plates of composite construction have received
little attention.

Thin isotropic plates with point supports have received a
great deal of attention in the literature,1– 16 and Mizusawa and
Kajita14 present a signi� cant review of the literature available
until 1987. Recent works regarding point supports include
those of Bhat,1 Gorman,4 Bapat and Suryanarayan,6– 8 and Ba-
pat et al.9 Edge supports are included in some of the refer-
ences,6–9,11–14 the most recent of which is that of Saliba.12 Thick
isotropic square and skew plates with point supports were stud-
ied by Aksu and Felemban15 and Kitipornchai et al.,16 respec-
tively. Orthotropic plates with point supports were studied by
Srinivasan and Munaswamy.17 However, plates of composite
construction with point supports have not been so widely stud-
ied. One such reference found by the authors dealing with
these plates is that of Sadasiva Rao and Singh.18 In that paper,
the authors investigate corner-supported, square, thick plates
using the � nite element method. Several uses of plates having
point supports can be found in civil engineering applications,
such as bridge sections. However, the authors are motivated
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by recent studies on the designs of joined-wing aircraft,19,20 and
of truss-braced aircraft.21 The truss-braced aircraft is being pro-
posed to increase the aspect ratio of the wings of future large
transports.21 The attachment point of the tail horizontal section
to the main wing of joined-wing aircraft and the truss attach-
ment point for truss-braced aircraft can be represented by an
elastically restrained point, thus allowing for the analysis of
individual components.

The Rayleigh– Ritz procedure has been applied by Lovejoy
and Kapania22– 24 in the analysis of quadrilateral, thick, gener-
ally laminated plates having arbitrary edge supports. Cheby-
chev polynomials are taken as the trial functions. Using lam-
inate shear correction factors of k4 = k5 = , the � rst-2p /12Ï
order shear deformation theory is implemented (for an isotro-
pic plate the shear correction factor is k = (k4)

2). This method
is the basis for the present research, which is intended to give
some insight into the analysis and behavior of laminated plates
having arbitrarily placed elastically restrained and � xed point
supports, and having any combination of free, simply sup-
ported, and clamped edges. Although these types of plates can
be analyzed using the � nite element method, at times it is more
bene� cial to have a method that is computationally simple and
that still yields accurate results.

Theory
The procedure employed by Lovejoy and Kapania22– 24 is

utilized and expanded. Figure 1 shows the plate de� nition and
transformed coordinates. The familiar related transformation
equations for this mapping are given by

4 4

x = N (h, j )x , y = N (h, j )y (1)i i i iO O
i=1 i=1

where

1 1– –N = (1 1 h)(1 2 j ), N = (1 1 h)(1 1 j )4 2 4
(2)

1 1– –N = (1 2 h)(1 1 j ), N = (1 2 h)(1 2 j )3 4 4 4

and xi and yi are the corner coordinates of the plate de� ned in
Fig. 1. The determinant for the Jacobian, uJ u, as needed for
evaluating the integrals is easily found. Transverse shear is



KAPANIAAND LOVEJOY 959

Fig. 1 Plate de� nition and transformation: a) original and b)
transformed coordinates.

Fig. 2 Elastically restrained or � xed point position in the a) orig-
inal plate and b) transformed coordinate systems.

included by means of the � rst-order shear deformation theory
(FSDT), with the displacement equations given as

0u = u (x, y, t) 1 zf (x, y, t)x (3)
0 0v = v (x, y, t) 1 zf (x, y, t), w = w (x, y, t)y

where the superscript denotes midplane quantities. Applying
the Rayleigh– Ritz method, each displacement quantity in Eq.
(3) is expanded in a series of Chebychev polynomials in the
transformed coordinates. The double-series expansions consist
of products of the one-dimensional Chebychev polynomials,
and are

I J K L

0 0u = R (t)T (h)T (j ), v = S (t)T (h)T (j )ij i j kl k lOO OO
i=0 j=0 k=0 l=0

M N

0w = P (t)T (h)T (j ) (4)mn m nOO
m=0 n=0

P Q R S

f = X (t)T (h)T (j ), f = Y (t)T (h)T (j )x pq p q y rs r sOO OO
p=0 q=0 r=0 s=0

where Rij, Skl, Pmn, Xpq, and Yrs are the time-dependent Ray-
leigh– Ritz coef� cients.

The equations of motion are developed using Lagrange’s
equations, resulting in the development of the total stiffness
and mass matrices, denoted by [K ] and [M ], respectively. The
total stiffness matrix is derived from the potential energy, and
is composed of matrices representing the contributions from
the strain energy, edge boundary conditions, and elastically
restrained and � xed point supports. Thus

[K ] = [K ] 1 [K ] 1 [K ] (5)strain edges pts

Linear strain-displacement relations are used, resulting in the
stiffness matrix because of strain, given by

A B1 1
0UT T B D[K ] = [C ] [T ] [T ][C ] uJ u dh dj (6)strain E E F U G

21 21 0 A9

Details of the transformation matrix, [T ], and the [C ] matrix
can be found in Ref. 22. The 3 3 3 submatrices [A], [B], and
[D] are associated with the classical laminate theory (CLT)
contributions. FSDT contributions are introduced through the
2 3 2 submatrix given by

2k A k k A4 44 4 5 45[A9] = (7)2F Gk k A k A4 5 45 5 55

Simply supported and clamped conditions are approximated
by large stiffness, linear, and rotational springs applied at the
edges. Simply supported edges require = w0 = gt = 0, where0mn

is the midplane displacement normal to the edge, and gt is0mn

the rotation tangent to the edge. Clamped edges have =0mn

= w0 = gn = gt = 0, where is the midplane displacement0 0m mt t

tangent to the edge, and gn is the rotation normal to the edge.
An expression for the potential energy of the edge supports is
easily found,22 leading to a stiffness matrix having the form

K 0 0 0 011

1 0 K 0 0 022

[K ] = 0 0 K 0 0 dg (8)edges 33E F G2 1 0 0 0 K 044

0 0 0 0 K55

where details of the submatrices can be found in Refs. 22 and
23.

Point supports and elastic restraints are now introduced by
means of linear springs that restrain the transverse de� ection,
w, for comparison with the references. In the current method,
only the transverse de� ection is restrained, but additional lin-
ear and rotational springs are easily added as desired to restrain
the other degrees of freedom. The locations of point supports
in the transformed domain are found using the numerical re-
verse transformation procedure presented by Murti and Val-
liappan.25 A numerical reverse transformation is necessary be-
cause for the general case, no analytic reverse transformation
exists. Figure 2 shows the location of a point in the original
and transformed spaces.

The potential energy resulting from a point support is given
by

1 2– aw (h , j ) (9)2 p p

where a represents the linear spring stiffness value, and the
subscript p denotes coordinates at the point location. The stiff-
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Table 4 Frequency parameter, V = , for an2v a r h /DÏ
isotropic, thick, skew, corner-supported plate, n = 0.3

b /a b h /a
Kitipornchai,

et al.16
Present
study

1.0 15 0.1 7.0202 7.0853
11.901 12.011
16.965 17.149

0.2 6.1399 6.2227
10.128 10.230
13.679 13.794

30 0.1 8.2609 8.3355
10.477 10.553
21.270 21.461

0.2 7.0469 7.1362
9.0860 9.1842
16.538 16.645

45 0.1 9.5153 9.5697
10.489 10.570
25.740 25.787

0.2 8.3724 8.4727
8.6833 8.7827
20.353 20.438

2.0 15 0.1 2.4003 2.4095
5.7865 5.8564
8.8392 8.9453

0.2 2.3075 2.3202
5.2496 5.3141
7.7901 7.8790

30 0.1 2.7892 2.8010
5.1282 5.1729
10.705 10.812

0.2 2.6470 2.6625
4.7098 4.7572
9.5785 9.7244

45 0.1 3.5688 3.5863
4.6614 4.6875
9.9525 10.026

0.2 3.3201 3.3416
4.3140 4.3507
8.9853 9.1096

Table 5 Frequency parameter, V = ,2v a r h /DÏ
for an isotropic, thin, cantilever, plate, n = 0.3a

b /a Narita11 Present study

1 8.509 8.5346
12.13 12.230
25.61 25.636
30.96 30.985
40.23 40.836

2 3.576 3.6429
3.721 3.7891
10.93 10.999
12.15 12.074
19.54 19.562

a
With point support at the center of the free edge opposite the

clamped edge.

Table 3 Frequency parameter,
V = , for an isotropic, thin, skew,2v a r h/DÏ

corner-supported plate, b /a = 1, n = 0.3

b
Srinivasan and
Munaswamy17

Mizusawa
and Kajita14

Present
study

15 7.65 7.583 7.582
13.29 13.17 13.18
19.94 19.59 19.60
20.40 20.29 20.29
34.41 33.97 33.96

30 9.40 9.104 9.104
11.89 11.40 11.41
22.80 22.65 22.65
26.75 25.18 25.17
31.54 30.29 30.29

45 11.66 10.21 10.21
13.21 11.82 11.82
28.09 27.76 27.78
32.85 29.78 29.79
38.32 33.34 33.35

Table 2 Frequency parameter, V = ,2v a r h /DÏ
for an isotropic, thin, square plate point-supported

on the diagonal, n = 0.3a

a /a Gorman2
Raju and

Amba-Rao5 Gorman4
Present
study

0.1 12.81 12.810 12.81 12.811
19.22 19.220 19.22 19.589
23.39 23.387 23.39 23.795
54.00 54.009 54.04 54.927
58.32 58.300 58.32 58.600

0.2 19.22 19.220 19.22 19.589
23.12 23.121 23.12 23.053
31.77 31.771 31.77 32.521
47.36 47.380 47.36 48.554
—— 51.087 51.04 53.330

0.3 19.22 19.220 19.22 19.310
19.26 19.268 19.26 19.589
23.58 23.600 23.58 24.659
—— 25.396 25.38 26.405
36.36 36.355 36.36 37.352

a
Using terminology of Raja and Amba-Rao.5

Table 1 Frequency parameter,
V = , for an isotropic, thin,2v a r h/DÏ
square, corner-supported plate, n = 0.3

Gorman2
Raju and

Amba-Rao5 Gorman4
Present
study

7.180 7.1018 7.112 7.1104
15.56 15.540 15.55 15.779
19.22 19.220 19.22 19.589
38.36 38.176 38.18 38.400
44.28 44.040 44.08 44.380
50.00 49.824 49.92 50.345
68.12 68.110 68.12 69.234
80.20 80.030 80.08 80.375
91.80 91.460 91.56 92.961
115.1 115.20 115.1 118.93

ness matrix resulting from the potential energy associated with
the point supports has the form

0 0 0 0 0
0 0 0 0 0

[K ] = 0 0 0 0 0 (10)pts F G0 0 0 0 0
0 0 0 0 Kwpts

Including any of the other displacements or rotations for a
point support will result in the appropriate, additional subma-
trices along the diagonal.

The mass matrix is derived from the kinetic energy, and is
found to be

1 1

T[M ] = {[Z ] [r ][Z ]} uJ u dh dj (11)CE E
2 1 2 1

where the matrix [rC] contains the inertia terms de� ned by

h/2 h/2 h/2

2r = r dz, r = r z dz, r = r z dz (12)1 k 2 k 3 kE E E
2h/2 2 h/2 2 h/2
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Table 6 Frequency hertz, for cantilever plates
with point supports at the free cornersa

Stacking
sequence b

Three-node
triangular

� nite element
Present
study

[45/245/0]s 0 93.490 93.105
148.32 147.67
178.18 177.19
332.97 331.42
373.56 370.79

30 80.316 79.960
159.13 158.93
170.20 169.99
247.42 246.56
409.30 408.39

45 63.484 63.636
134.85 136.59
167.94 168.62
217.64 218.23
320.03 325.08

[0.22.5] 0 64.514 64.373
140.65 139.52
188.15 187.17
247.33 246.14
270.13 269.72

30 60.533 60.304
129.59 128.88
172.50 172.12
222.39 221.48
293.76 293.11

45 54.100 53.816
128.92 128.85
143.59 143.65
176.72 175.86
276.42 275.72

a
Compared with results using the three-node � nite element

of Kapania and Mohan.26 Laminated plates made from
boron/epoxy having aspect ratio = 1, taper ratio = 1, area
= 412.9024 cm2, and thickness = 0.124968 cm.

Table 7 Frequency parameter, V = ,2( v a /h) r /EÏ 2

for symmetrically laminated [ u /2 u /0]s, thin,
corner-supported plates, h /a = 0.01, b /a = 1

u

b

0 15 30 45

0 2.727 2.905 3.546 5.117
5.622 5.763 6.270 7.350
9.474 10.14 12.36 16.71
14.79 14.72 15.24 16.99
16.75 18.28 22.50 29.69

15 2.927 3.109 3.793 5.453
9.744 9.096 9.020 9.436
11.74 12.91 15.93 20.31
19.27 18.69 18.96 22.23
23.86 25.37 29.12 34.85

30 4.104 4.259 5.157 7.181
14.18 12.74 11.40 10.17
16.95 19.34 22.03 23.63
19.20 20.86 24.92 32.67
27.89 27.77 30.71 37.24

45 7.610 7.747 8.532 7.849
10.23 13.16 10.09 9.584
16.45 13.25 19.39 24.22
22.22 24.41 27.62 31.69
38.74 32.35 28.02 32.39

60 5.413 7.348 7.906 6.104
14.85 10.87 10.15 9.717
17.30 15.83 16.67 24.18
20.08 23.51 24.22 24.55
32.47 27.37 24.45 26.45

75 4.321 5.119 6.389 5.306
10.47 8.108 7.128 8.627
14.67 17.28 14.64 16.64
21.31 20.22 22.71 21.64
26.81 27.41 26.00 26.06

90 4.038 4.169 4.711 4.383
6.559 5.752 4.841 5.864
12.04 14.57 12.89 12.86
19.47 14.92 19.01 18.73
19.64 26.93 26.90 22.99

Table 8 Frequency parameter, V = ,2( v a /h) r /EÏ 2

for unsymmetrically laminated [ u /2 u ], thin,
corner-supported plates, h /a = 0.01, b /a = 1

u

b

0 15 30 45

15 2.800 2.985 3.644 5.220
7.560 7.488 7.563 7.951
9.434 10.27 12.76 16.36
14.62 14.65 15.06 17.57
17.99 18.87 21.12 24.32

30 3.445 3.668 4.436 6.093
10.57 9.701 8.741 7.838
11.16 11.81 13.83 17.20
11.23 12.65 15.53 20.55
21.44 22.22 22.28 22.53

45 4.579 4.937 5.870 5.766
7.916 9.160 7.434 7.008
12.09 9.708 12.55 18.14
12.09 14.27 16.91 18.55
26.73 23.49 19.42 20.82

60 3.445 4.203 5.491 4.175
10.57 7.723 5.922 6.534
11.16 11.46 11.53 14.14
11.23 14.06 15.97 16.38
21.44 19.36 17.45 20.28

75 2.800 3.279 4.377 3.528
7.560 5.814 4.609 5.669
9.434 12.21 9.909 10.84
14.62 12.63 15.12 14.23
17.99 19.24 19.88 19.83

and r is the mass density. Details for the matrix [Z ] are given
in Ref. 22.

Natural frequencies are determined from the resulting ei-
genvalue problem having the form

[K 2 lM ]{q} = 0 (13)

{q} = {R , R , . . . , R , S , . . . , S , X , . . . , X ,00 01 IJ 00 KL 00 PQ

TY , . . . , Y , P , . . . , P } (14)00 RS 00 MN

where l = v2 is an eigenvalue of the system, and v is the
corresponding frequency in radians/second, and {q} is the as-
sociated eigenvector of Rayleigh– Ritz coef� cients.

A Fortran program was developed to perform the natural
frequency calculations. As in Refs. 22– 24, eight terms are
taken in each series unless otherwise indicated, and an eight-
point Gaussian quadrature is used for evaluating the integrals.
The resulting eigenvalue problem having 320 degrees of free-
dom is solved using the International Mathematical and Sta-
tistical Library subroutine DGVCSP, which uses an algorithm
exploiting the symmetry of the stiffness and mass matrices and
the positive de� niteness of the mass matrix.

Results and Discussion
Veri� cation of Present Method

Isotropic, Point Supports

Comparison of the present method with the references for
isotropic plates having only point support can be seen in Tables
1 – 4. The frequency parameter V = is utilized,2va rh /DÏ
where a is the root length indicated in Fig. 1, h is the total
plate thickness, and D = Eh3/12(1 2 n2) is the plate � exural
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Table 9 Frequency parameter, V = ,2( v a /h) r /EÏ 2

for symmetrically laminated [ u /2 u /0]s, thick,
corner-supported plates, h /a = 0.1, b/a = 1

u

b

0 15 30 45

0 2.581 2.729 3.242 4.397
5.038 5.133 5.457 6.079
7.816 8.231 9.546 12.06
12.69 12.03 11.97 12.58
12.86 14.43 17.41 21.90

15 2.745 2.902 3.465 4.719
7.558 7.153 7.077 7.307
8.953 9.760 11.51 14.57
13.78 13.71 13.97 14.87
16.73 17.26 19.19 22.57

30 3.617 3.757 4.417 5.752
9.359 8.603 8.026 7.604
11.06 12.15 13.99 17.10
12.15 13.09 14.84 17.18
20.62 19.54 19.21 20.61

45 5.345 5.556 6.064 6.447
9.568 8.710 7.480 6.813
10.04 10.87 14.30 17.53
11.45 12.80 14.72 17.83
22.59 20.24 18.47 20.00

60 4.470 5.290 6.460 5.380
9.660 7.921 6.491 7.065
11.26 12.93 13.68 15.08
13.23 12.94 14.66 17.02
21.44 19.11 18.42 21.18

75 3.821 4.301 5.475 4.776
8.051 6.687 5.544 6.651
10.07 12.25 12.52 13.18
15.46 13.79 14.54 16.53
18.46 18.19 17.80 18.57

90 3.620 3.651 4.075 4.044
5.850 5.230 4.443 5.025
9.066 10.15 11.41 11.42
14.97 12.67 13.30 15.70
15.62 17.32 16.91 15.76

Fig. 3 Frequency parameter, V = , for symmetri-2( v a /h) r /EÏ 2

cally laminated [ u /2 u /0]s, thin, corner-supported plates, h /a =
0.01, b /a = 1, b = 0.Table 10 Frequency parameter, V = ,2( v a /h) r /EÏ 2

for unsymmetrically laminated [ u /2 u ], thick,
corner-supported plates, h /a = 0.1, b/a = 1

u

b

0 15 30 45

15 2.640 2.795 3.330 4.508
6.356 6.297 6.322 6.544
7.764 8.318 9.882 12.67
11.88 11.90 12.20 13.12
14.54 15.13 16.65 18.74

30 3.137 3.318 3.917 5.089
7.976 7.445 6.887 6.435
8.521 9.403 11.14 14.02
9.750 10.22 11.69 14.27
17.22 16.86 16.37 16.66

45 3.884 4.114 4.748 5.094
7.575 7.370 6.124 5.584
8.670 8.494 11.02 13.87
8.670 10.00 11.72 14.40
18.53 17.03 15.19 15.90

60 3.137 3.640 4.763 3.889
7.976 6.325 4.863 5.409
8.521 10.00 10.18 11.29
9.747 10.11 11.69 13.16
17.22 15.45 14.79 16.88

75 2.640 3.005 3.999 3.334
6.356 5.135 4.034 4.923
7.764 9.614 8.979 9.466
11.88 10.48 11.66 12.34
14.54 14.99 15.24 15.61

rigidity. Table 1 shows the results for a square, thin isotropic
plate that has point supports at the corners. In the references,
one-quarter of the plate is analyzed, resulting in the need to
impose the boundary conditions necessary to represent a line
of symmetry or antisymmetry. This leads to a need to solve
the problem three different times to obtain all of the necessary
frequencies. Also, this approach is not applicable for unsym-
metrically laminated plates. Using the global Rayleigh– Ritz
method has eliminated this need in the present study while still
yielding accurate results.

Results for a thin, isotropic plate having point supports on
the diagonals are presented in Table 2. Skew, thin, isotropic
plates having corner point supports are compared in Table 3,
and thick, isotropic, skew plates are presented in Table 4 for
ratios of b/a = 1 and b/a = 2. All results in Tables 1– 4 show
excellent agreement between the references and the present
method.

Isotropic, Edge and Point Supports

To further verify the present method, it is applied to plates
having edge supports as well as the point supports. Table 5
presents the results for thin, cantilever plates having a single
point support in the middle of the free edge opposite the
clamped edge. Again, the present method shows excellent
agreement when compared with available results.11

Laminated, Edge and Point Supports

Lastly, comparison of the present method to previously un-
available results for cantilever laminated plates with point sup-
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Fig. 4 Frequency parameter, V = , for symmetri-2( v a /h) r /EÏ 2

cally laminated [ u /2 u /0]s, thin, corner-supported plates, h /a =
0.01, b /a = 1, b /a = 1, b = 30.

Fig. 5 Frequency parameter, V = , for unsymmet-2( v a /h) r /EÏ 2

rically laminated [ u /2 u ], thin, corner-supported plates, h/a =
0.01, b/a = 1, b = 0 (for u = 45, the fourth frequency is a repeated
frequency and is omitted).

Fig. 6 Frequency parameter, V = , for unsymmet-2( v a /h) r /EÏ 2

rically laminated [ u /2 u ], thin, corner-supported plates, h/a =
0.01, b /a = 1, b = 30.

ports at the corners has been carried out. The comparative
results are found using the three-node shell element developed
by Kapania and Mohan.26 This shell element is a combination
of the Allman triangular membrane element and the DKT
bending element with a resulting 18-degree-of-freedom ele-
ment, six at each node. The plates are composed of boron/
epoxy with the following properties: E1 = 161.21 GPa, E2 =
E3 = 12.52 GPa, G12 = G13 = 6.75 GPa, G23 = 5.47 GPa (cal-
culated letting G23 = 0.81G12), n12 = 0.22, and r = 1881.81 kg/
m3. Table 6 shows the results for thin symmetrically and un-
symmetrically laminated plates. Frequencies are given in hertz,
and excellent agreement is seen between the two methods.

Square, Point Supported, Laminated Plates

Using the method developed, a brief study of square, corner-
supported, generally laminated plates is made. Results are pre-
sented to demonstrate the present method and to provide com-
parative data for future work. The frequency parameter, V =

, for thin, laminated plate results are given in2(va /h) r/EÏ 2

Tables 7 and 8. E2 is the Young’s modulus in the 2-direction
in the material axes. Results are given for symmetric and un-
symmetric laminates, respectively. Similarly, results for thick
laminated plates are presented in Tables 9 and 10. In each case,
the plates are made from graphite/epoxy with property ratios
that are given as (Refs. 21– 23) E1/E2 = 40, G12/E2 = G13/E2 =
0.6, G23/E2 = 0.5, and n12 = 0.25.

Figures 3– 6 provide mode shapes and the associated fre-
quency parameters for thin laminated plates. The plots for
mode shapes are oriented such that the x axis is at the bottom

of the � gure and oriented pointing toward the right, with the
y axis oriented pointing up. A study of these � gures shows
several instances of crossover of mode shapes. For example,
Fig. 4 shows that the � rst and second mode shapes switch for
u between 45 and 60 deg, then again for u between 75 and 90
deg. Only corner supports are used for the plates of Tables
7 – 10 and Figs. 3 – 6, but the point supports can be arbitrarily
placed at any number of locations.
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Fig. 7 Frequency in hertz as a function of the number of terms
in the series for a symmetrically laminated [302/0]scantilever plate
having a point support at the corner intersection of the tip and
trailing edges. The plate is made of glass/epoxy with plate geom-
etry parameters as follows: b = 30, thickness = 0.14 in. (3.556
mm), aspect ratio = 3.11, taper ratio = 0.5, and area = 63.0 in.2

(406.45 cm2).

Fig. 8 Frequency in hertz as a function of nondimensional spring
value for a symmetrically laminated [302/0]s cantilever plate hav-
ing a point support at the corner intersection of the tip and trail-
ing edges. The plate is made of glass/epoxy with plate geometry
parameters as follows: b = 30, thickness = 0.14 in. (3.556 mm),
aspect ratio = 3.11, taper ratio = 0.5, and area = 63.0 in.2 (406.45
cm2).

Plates Having Elastically Restrained Point Supports

As mentioned earlier, the authors are interested in the ap-
plication of the current method to the analysis of joined-wing
and truss-braced aircraft. Figure 7 shows the convergence for
the � rst three modes resulting from the number of terms in the
series for a skew, symmetrically laminated [302/0]s cantilever
plate, having a point support at the corner intersection of the tip
and trailing edges. The plate is made of glass/epoxy with the
properties E1 = 38.61 GPa, E2 = E3 = 8.27 GPa, G12 = G13 =
4.14 GPa, G23 = 3.35 GPa (calculated letting G23 = 0.81G12), n12

= 0.26, and r = 2546.54 kg/m3. Plate geometry parameters are
as follows: b = 30, thickness = 0.14 in. (3.556 mm), aspect ratio
= 3.11, taper ratio = 0.5, and area = 63.0 in.2 (406.45 cm2).

The same plate is then used to study the effect of changing
the value for spring constant at the point support. Figure 8
shows the variation of the � rst three frequencies as a function
of the point spring value nondimensionalized by the spring
value used at the cantilevered edge that is applied to the trans-
verse de� ection. It can be seen that variations in the frequencies
occur for azpt /azr between 10214 and 1027. For values smaller
and larger than this range, the solutions are obtained for the
cantilevered plate without a point support and the cantilevered
plate with a � xed point support, respectively. Appropriate choice

of the elastically restrained spring value will permit the analysis
of joined-wing and trussed-braced wing components.

Conclusions
Evaluation of the present method leads to several conclu-

sions.
1) For plates with a relatively low number of elastically

restrained or � xed point supports, the present method gives
accurate results.

2) Elastically restrained points can effectively be included
in the current plate model formulation. These can be used to
investigate truss-braced wing and joined-wing con� gurations.

3) Using trial functions that satisfy the essential boundary
conditions at the point supports may give better results for
plates having many � xed point supports while using fewer
terms than the present method using the Chebychev polyno-
mials.

A simple and computationally ef� cient method has been de-
veloped for the study of thick, generally laminated plates hav-
ing quadrilateral planform and arbitrarily located point sup-
ports. The method is ideal for procedures that require only the
� rst few modes and having multiple calculations, such as in
optimization. When multiple calculations are required, how-
ever, an eigenvalue extraction procedure such as the Lanczos
method should be employed to ef� ciently calculate only the
desired natural frequencies, i.e. � rst few modes. Because only
the x and y locations of the point support are required to study
the point support, it is trivial to move the support locations
without the need for remeshing that may be necessary in a
� nite element approach. Therefore, the entire plate system is
easily represented by design parameters such as span, aspect
ratio, taper ratio, area, point support locations, and stacking
sequence.

Numerous zeroth-order optimization methods exist that only
require the function values, such as the simplex method, ge-
netic algorithms, simulated annealing, etc., which can be used
with the present method. Because the reverse transformation
must be determined numerically, the derivatives of the stiffness
matrix with respect to the point location values does not exist.
However, if optimization methods requiring derivative infor-
mation are used, the necessary derivatives can be generated
using the response surface method. Thus, the present method
can be utilized by numerous optimization methods.

Reference 20 identi� es buckling of the tail section as a key
constraint in the design of joined-wing aircraft. This is a sep-
arate design issue, and would have to be addressed by means
other than the present method. However, the addition of buck-
ling response using the current approach is currently being
explored. Regardless, independent dynamic analysis of the
wing and tail sections is possible with the present method,
including � utter analysis. Additionally, because the joined
wing response may be affected by rotational stiffness at the
joint, rotational terms can easily be incorporated to the point
support stiffness matrix, as mentioned earlier.

Including rib and spar contributions will lead to a better
equivalent plate model for wing analysis, a procedure that is
currently being developed. Applying the current approach for
the elastically restrained points to the equivalent plate model
will provide a more useful analysis tool for advanced-concept
wings such as truss-braced wings and joined-wings.

Future work includes the addition of spring-supported
masses located on the wing. These spring-supported masses
can, for example, represent stores or engines attached to the
wing. The present method was also applied to line-supported
plates by using a large number of point supports to represent
the line support. However, very poor convergence results were
observed, indicating that more research needs to be performed
before the method can be applied to line-supported plates. Be-
cause of this, the authors have developed a line-support for-
mulation that shows reasonable results for the fundamental fre-
quencies, but is still being investigated.24



KAPANIAAND LOVEJOY 965

Acknowledgments
The authors thank P. Mohan for providing the comparative

� nite element results for Table 6, using the three-node trian-
gular � nite element that was developed as part of his Ph.D.
research work under the guidance of the senior author. Also,
the authors thank D. MacMurdy for providing the modi� ed
reverse transformation subroutine for the current plate corner
numbering scheme.

References
1Bhat, R. B., ‘‘Vibration of Rectangular Plates on Point and Line

Supports Using Characteristic Orthogonal Polynomials in the Ray-
leigh-Ritz Method,’’ Journal of Sound and Vibration, Vol. 149, No.
1, 1991, pp. 170– 172.

2Gorman, D. J., ‘‘An Analytical Solution for the Free Vibration
Analysis of Rectangular Plates Resting on Symmetrically Distributed
Point Supports,’’ Journal of Sound and Vibration, Vol. 79, No. 4,
1981, pp. 561– 574.

3Gorman, D. J., ‘‘Free Vibration of Rectangular Plates with Sym-
metrically Distributed Point Supports Along the Edges,’’ Journal of
Sound and Vibration, Vol. 73, No. 4, 1980, pp. 563– 574.

4Gorman, D. J., ‘‘A Note on the Free Vibration of Rectangular
Plates Resting on Symmetrically Distributed Point Supports,’’ Journal
of Sound and Vibration, Vol. 131, No. 3, 1989, pp. 515– 519.

5Raju, I. S., and Amba-Rao, C. L., ‘‘Free Vibrations of a Square
Plate Symmetrically Supported at Four Points on the Diagonal,’’ Jour-
nal of Sound and Vibration, Vol. 90, No. 2, 1983, pp. 291– 297.

6Bapat, A. V., and Suryanarayan, S., ‘‘The Fictitious Foundation
Approach to Vibration Analysis of Plates with Interior Point Sup-
ports,’’ Journal of Sound and Vibration, Vol. 155, No. 2, 1992, pp.
325– 341.

7Bapat, A. V., and Suryanarayan, S., ‘‘Free Vibrations of Periodi-
cally Point-Supported Rectangular Plates,’’ Journal of Sound and Vi-
bration, Vol. 132, No. 3, 1989, pp. 491– 509.

8Bapat, A. V., and Suryanarayan, S., ‘‘Free Vibration of Rectangular
Plates with Interior Point Supports,’’ Journal of Sound and Vibration,
Vol. 134, No. 2, 1989, pp. 291– 313.

9Bapat, A. V., Venkatramani, N., and Suryanarayan, S., ‘‘A New
Approach for the Representation of a Point Support in the Analysis
of Plates,’’ Journal of Sound and Vibration, Vol. 120, No. 1, 1988,
pp. 107– 125.

10Kerstens, J. G. M., Laura, P. A. A., Grossi, R. O., and Ercoli, L.,
‘‘Vibrations of Rectangular Plates with Point Supports: Comparison
of Results,’’ Journal of Sound and Vibration, Vol. 89, No. 2, 1983,
pp. 291– 293.

11Narita, Y., ‘‘The Effect of Point Constraints on Transverse Vibra-
tion of Cantilever Plates,’’ Journal of Sound and Vibration, Vol. 102,
No. 3, 1985, pp. 305– 313.

12Saliba, H. T., ‘‘Experimental Free Vibration Analysis of Rectan-

gular Cantilever Plates with Rigid Point Supports,’’ Journal of Sound
and Vibration, Vol. 171, No. 4, 1994, pp. 459– 472.

13Saliba, H. T., ‘‘Free Vibration Analysis of Rectangular Cantilever
Plates with Symmetrically Distributed Point Supports Along the
Edges,’’ Journal of Sound and Vibration, Vol. 94, No. 3, 1984, pp.
381– 395.

14Mizusawa, T., and Kajita, T., ‘‘Vibration of Skew Plates Resting
on Point Supports,’’ Journal of Sound and Vibration, Vol. 115, No. 2,
1987, pp. 243– 251.

15Aksu, G., and Felemban, M. B., ‘‘Frequency Analysis of Corner
Point Supported Mindlin Plates by a Finite Difference Energy
Method,’’ Journal of Sound and Vibration, Vol. 158, No. 3, 1992, pp.
531– 544.

16Kitipornchai, S., Xiang, Y., and Liew, K. M., ‘‘Vibration Analysis
of Corner Supported Mindlin Plates of Arbitrary Shape Using the
Lagrange Multiplier Method,’’ Journal of Sound and Vibration, Vol.
173, No. 4, 1994, pp. 457– 470.

17Srinivasan, R. S., and Munaswamy, K., ‘‘Frequency Analysis of
Skew Orthotropic Point Supported Plates,’’ Journal of Sound and Vi-
bration, Vol. 39, No. 2, 1975, pp. 207– 216.

18Sadasiva Rao, Y. V. K., and Singh, G., ‘‘Vibration of Corner Sup-
ported Thick Composite Plates,’’ Journal of Sound and Vibration, Vol.
111, No. 3, 1986, pp. 510– 514.

19Gallman, J. W., and Kroo, I. M., ‘‘Structural Optimization for
Joined-Wing Synthesis,’’ Journal of Aircraft, Vol. 33, No. 1, 1996,
pp. 214– 223.

20Kroo, I. M., Gallman, J. W., and Smith, S., ‘‘Aerodynamic and
Structural Studies of Joined-Wing Aircraft,’’ Journal of Aircraft, Vol.
28, No. 1, 1991, pp. 74– 81.

21Jobe, C. E., Kulfan, R. M., and Vachal, J. D., ‘‘Wing Planforms
for Large Military Transports,’’ AIAA Paper 78-1470, Aug. 1978.

22Lovejoy, A. E., and Kapania, R. K., ‘‘Natural Frequencies and an
Atlas of Mode Shapes for Generally-Laminated, Thick, Skew, Trap-
ezoidal Plates,’’ Center for Composite Materials and Structures, Vir-
ginia Polytechnic Institute and State University, Rept. 94-09, Blacks-
burg, VA, Aug. 1994.

23Kapania, R. K., and Lovejoy, A. E., ‘‘Free Vibration of Thick
Generally Laminated Cantilever Quadrilateral Plates,’’ AIAA Journal,
Vol. 34, No. 7, 1996, pp. 1474– 1486.

24Lovejoy, A. E., and Kapania, R. K., ‘‘Free Vibration of Thick
Generally Laminated Quadrilateral Plates with Point Supports,’’ AIAA/
ASME/ASCE /AHS /ASC 37th Structures, Structural Dynamics, and
Materials Conference and AIAA/ASME Adaptive Structures Forum,
Vol. 1, AIAA, Reston, VA, 1996, pp. 248– 258.

25Murti, V., and Valliappan, S., ‘‘Numerical Inverse Isoparametric
Mapping in Remeshing and Nodal Quantity Contouring,’’ Computers
and Structures, Vol. 22, No. 6, 1986, pp. 1011– 1021.

26Kapania, R. K., and Mohan, P., ‘‘Static, Free Vibration and Ther-
mal Analysis of Composite Plates and Shells Using a Flat Triangular
Shell Element,’’ Computational Mechanics, Vol. 17, No. 5, 1996,
343– 357.


